# BACKCOUNTRY 

Michigan TECHNOLOGICAL UNIVERSITY
Design Report 2018

## Backcountry $\$

TABLE OF CONTENTS
Executive Summary ..... ii
Project and Quality Management ..... 1-2
Organization Chart ..... 3
Hull Design and Structural Analysis ..... 4-5
Development and Testing ..... 6-8
Construction ..... 9-10
Project Schedule ..... 11
Construction Drawing ..... 12
Appendix A - References ..... A1-A2
Appendix B - Mixture Proportions ..... B1-B2
Appendix C - Example Structural Calculation ..... C1-C3
Appendix D - Hull Thickness/Reinforcement and Percent Open Calculations ..... D1-D2
List of Figures
Figure 1. Breakdown of Person-hours by Category ..... 1
Figure 2. Prototype Construction ..... 4
Figure 3. Sitting Position (left) and Kneeling Position (right) ..... 5
Figure 4. Buoyant Force due to Paddler Loads and Canoe Weight. ..... 5
Figure 5. Uncrushed Shale ..... 6
Figure 6. Crushed Shale Passing No. 8 Sieve (left) and No. 16 Sieve (right) ..... 6
Figure 7. Aggregate Proportions by Volume ..... 7
Figure 8. GlasGrid $®^{8} 8511$ (left) and Fibreglast ${ }^{\circledR}$ (right) ..... 8
Figure 9. ASTM C1341-13 Flexural Bend Test ..... 8
Figure 10. Mixing of Concrete Batch on Casting Day ..... 9
Figure 11. Application of the First Layer of Concrete ..... 9
Figure 12. Reinforcement Placement ..... 10
Figure 13. Gunwale Cap Construction ..... 10
List of TABLES
Table 1. Properties of Backcountry. ..... ii
Table 2. Properties of the 2017-2018 Concrete Mixture ..... ii
Table 3. Quality Management Program ..... 2
Table 4. Hull Design Comparison ..... 4
Table 5. Aggregate Properties ..... 7
Table 6. Primary Reinforcement Specifications ..... 8

## BACKCOUNTRY

## EXECUTIVE SUMMARY

Inspired by the landscape surrounding Michigan Technological University (Michigan Tech) and the 2018 Winter Olympic Games, The Michigan Tech Concrete Canoe Team has dedicated this year's project to their love of snow. The Michigan Tech Concrete Canoe Team is notably familiar with cold weather. Averaging over 170 inches of snow every year (Michigan Technological University 2018), Houghton, Michigan is a popular hub for skiers, snowboarders, snowmobilers, and hockey fans of the Midwest. Michigan Tech was founded in Houghton in 1885 as a mining college, and today offers several majors in programs such as engineering, mathematics, pre-health, chemistry, and forestry. Michigan Tech's official values encourage "the exploration and creation of all possibilities through innovative use of skills and knowledge" (Michigan Technological University 2018).

Likewise, the Michigan Tech Concrete Canoe Team strives to use creative thinking to improve upon previous years' accomplishments using new methods, materials, and designs. Navigating the backcountry requires trust in one's fundamental skills and willingness to advance into the wild unknown. This theme translates to the team's approach to
 their 2018 canoe: to depend on knowledge passed down through the years while also exploring any new paths that could provide improved results. For example, a hull design used 15 years ago served as a baseline for this year's canoe, but alterations were made based on performance of last year's canoe, Free Range. A material new to the team was used as the primary reinforcement, and a redesigned concrete mixture testing scheme decreased the cost and time needed to select the final structural mix. The structural analysis committee developed a more accurate assessment of the canoe's strength requirements, and the team executed more sustainable practices when handling leftover material from previous years.

The Michigan Tech Concrete Canoe Team has competed in the North Central Student Conference since 1992. In the last three years, the team has placed $1^{\text {st }}$ at the conference competition and placed $11^{\text {th }}, 8^{\text {th }}$, and $11^{\text {th }}$ in 2015, 2016, and 2017, respectively at the national competition. The Michigan Tech Concrete Canoe Team aims to "send it" in 2018 with this year's canoe, Backcountry.

Table 2. Properties of the 2017-2018 Concrete Mixture

| Mixture | Unit Weight (pcf) |  | Strength (psi) |  |  |  | Air Content (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wet | Oven-Dry | Compressive |  | Tensile |  |  |
|  |  |  | 14-Day | 28-Day | 14-Day | 28-Day |  |
| Structural | 74.1 | 72 | 1930 | 2360 | 410 | 450 | -11.0 |
| Pigmented Finishing | 94.5 | 92 | 990 | 1050 | 100 | 120 | -0.6 |
| Composite Flexural Strength: 1610 psi |  |  |  |  |  |  |  |

Composite Flexural Strength: 1610 psi

## Project and Quality Management

Toward the end of the 2017 spring semester, the Michigan Tech Concrete Canoe Team selected two new project managers for the 2017-2018 school year. Additionally, committee head positions were filled through nominations and a voting process within the full team. The project managers' roles include overall logistics of the project, creation and preservation of the project schedule, and delegation of the committee heads. A new treasurer was elected; this team member works alongside the project managers to maintain budget control and set goals for team spending. Furthermore, the newly established construction manager position was filled by a team member with experience in handling materials, mix design, casting, and finishing techniques.


Figure 1. Breakdown of Person-hours by Category
After filling the leadership positions, the project would postpone the entire project schedule. While the new concrete mixture testing scheme decreased the time and material needed last year to select the final mixture, an error recorded in a mix table caused a delay in the final selection. Because the planned schedule allowed an extra two weeks, this delay did not affect the project duration. Overall, an estimated 2070 person-hours were committed to the entire project. A breakdown of this number is shown in Figure 1.

The team's safety program experienced a major overhaul due to relocation of the team workspace. Every team member completed university laboratory-specific safety training including job hazard analysis, crystalline silica awareness, personal protective equipment, and hazard communication. In conjunction with these programs, the team's safety committee communicated a "safety focus of the week," which was discussed at each weekly team meeting. Furthermore, the safety committee head and project managers held brief reviews of safety concerns before large-group activities including casting, demolding, and sanding.

To finance project and travel costs, the Michigan Tech Concrete Canoe Team publicizes their work amongst personal friends, family, team alumni, and the local community. For example, team members spent a day volunteering at a local grocery store to help promote the project while also interacting with the community. In addition to private monetary donations, the team also relies on donations from Michigan Tech academic departments and material donations from companies in close relations with the team. Combining these fiscal sources, the team was able to cover its estimated expenses of $\$ 12,000$ for the year.

To improve the team's environmental sustainability practices, members were encouraged to identify positive uses for canoes from previous competitions rather than disposing of them. The team was successful in this endeavor; the most aesthetically pleasing sections of the old canoes have been reserved to be displayed in academic buildings on campus. The leftover pieces are stored in the team workspace to use as examples of past aesthetic techniques. Social
sustainability is maintained through both short-term and long-term communication methods. In the short term, committees constantly give progress updates to the team through email to keep everyone on the same page. In the long term, each committee has an instruction document written and updated by previous committee heads so that previous knowledge is transferred and mistakes are not repeated. Additionally, team alumni stay in close contact with the team to provide professional advice and expertise when needed.

Last year, a new Quality Control \& Quality Assurance (QC/QA) procedure covering the entire project was formally created, focusing on seven primary divisions: communications control, compliance control, document control, technical review, schedule control, material procurement, and training (Michigan Tech Concrete Canoe Team 2017). This program has since been altered to comprise only three over-arching divisions for less complication, as shown in Table 3.

The primary goal of schedule control was to ensure the final product was completed on time and to its intended design. In order to meet this goal, the project managers required each committee head to

Table 3. Quality Management Program

| Schedule Control | Communications |
| :---: | :--- |
|  | Material Procurement |
| Budget |  |
|  | Technical Review <br> Documentation |
|  | Training |
|  | Recruitment |
|  | Things Learned | submit a preliminary plan of action at the beginning of the fall semester. Based on those plans, the project managers held the committees to firm deadlines to guarantee continuous project progression. In order to avoid delays of milestones, efficient material procurement was held to the utmost importance. When a committee requests more material, the treasurer promptly communicates with the department budget coordinator, who finalizes the purchase through the team's account. Using this process, the committees are able to focus on testing rather than making purchases on their own and waiting to be reimbursed. The treasurer also periodically meets with the team advisor in order to keep each other up to date on team financial matters and plan the budget for the future.

Compliance control is the team's formalized effort to avoid missteps or deductions at the competition. All design data and calculations are reviewed by experienced team members before submission. The project managers compiled all Request(s) for Information (RFIs) published by the Committee on National Concrete Canoe Competitions and distributed them to the appropriate committee head in order to keep them updated on rulings. The project managers held a mock final product judging session to prepare team members in assembling the canoe stands, display table, and cross section to competition standards. Finally, all documentation and files from previous years are kept organized in a central database accessible only by team members. This allows for committee heads to review information from previous years when considering their goals of the project.

Knowledge control includes all initiatives taken by the team to progress academically. Diversity in members' expertise is highly valued, so the Michigan Tech Concrete Canoe Team recruits heavily throughout the year. As a result, the team is currently made up of students in 10 different majors. Year-to-year knowledge transfer is maintained through a "things learned" document, where previous committee heads write instructions and advice for members entering new positions. The team encourages all members to participate in as many aspects of the project as possible. The resulting comprehensive experience gives new members the well-rounded knowledge and training needed to assume leadership roles in subsequent years.


## HULL Design

The hull design of Backcountry began with an assessment of the performance and handling of the hull design of past years. The team is fortunate to still have many of its wooden prototype canoes from teams dating back to the early 2000's. After testing many of these designs, paddler feedback was assessed to determine what favorable design aspects could be drawn from the array of boat designs. One design in particular, that of Michigan Tech's 2003 entry SISU, drew considerable praise for its performance (Michigan Tech Concrete Canoe Team 2003). The hull design committee decided to utilize many of the design aspects of this 2003 hull in its 2018 entry Backcountry.


Figure 2. Prototype Construction

To complete this task, some basic performance goals were established to ensure Backcountry would perform as a competitive canoe in competition. These goals included maintaining strong straight-line tracking and travel velocity while still preserving a strong turning ability and stability.

Backcountry, much like its inspiration SISU, features a slender deep bow, narrow parabolic stern, and relatively flat and wide amidships. The committee experimented with different hull lengths with the design software PROLINES 98 and concluded that a length of 20 feet optimized the balance between maximum velocity and frictional resistances. A slight rocker was included to counteract a decrease in maneuverability due to the longer hull while maintaining the focus on straight-line tracking. The beam width was reduced by 4.9 inches, increasing the length-to-beam ratio. This increased ratio indicated a slimmer hull, leading to less wave-making

Table 4. Hull Design Comparison

|  | SISU <br> $(2003)$ | Free Range <br> $(2017)$ | Backcountry <br> $(2018)$ |
| :---: | :---: | :---: | :---: |
| Length (ft.) | 20.0 | 20.0 | 20.0 |
| Length/Beam <br> Ratio | 9.210 | 9.682 | 9.096 |
| Freeboard <br> (ft.) | 0.480 | 0.529 | 0.475 |
| Rocker - <br> Bow (in.) | 1.92 | 2.67 | 2.34 |
| Rocker - <br> Stern (in.) | 1.82 | 4.75 | 2.10 | resistance and more efficient paddling. Increased height was added to the bow to prevent the boat from collecting water at high speeds.

A lauan wood prototype of this design was constructed for practical analysis (Figure 2). The hull design committee theorized that a canoe's straight-lining ability largely depends on the size of its rocker. Realistic race tests were conducted by the paddling team, comparing this prototype to ones built in previous years. The paddlers confirmed that when straight-lining, fewer paddle side switches were needed to maintain the direction of the boat at high speed. Thus, Backcountry's design proved to be a desirable balance of straight-line tracking, speed, and maneuverability when compared to other Michigan Tech canoe entries.

## STRUCTURAL ANALYSIS

The primary goal of the structural analysis committee was to identify, calculate, and locate the critical stresses experienced by Backcountry. This information was then applied to create an accurate and comprehensive evaluation of this year's design to establish necessary material design strengths and ensure the structural integrity of the canoe when delivered to competition.

To maximize the accuracy of the analysis, cross sections were taken at 1-inch increments along the length of the 20 -foot canoe. Each of these 239 cross sections were then broken down to their coordinate geometry using Autodesk® AutoCAD and analyzed using Microsoft Excel. The coordinate points were assembled as rectangular areas with a width of $3 / 8^{\text {th }}$ inch. After adding gunwales and accounting for overlaps and gaps, the areas, centroids, moments of inertia, second moments of inertia, and torsional constants were calculated for each cross section.


Figure 3. Sitting Position (left) and Kneeling Position (right)

Five loading cases were considered when conducting the analysis: transportation, display, and men's, women's and co-ed racing conditions. The transportation case was designed to model the boat in the trailer en route to competition: a beam with uniformly distributed weight evenly supported on the top and bottom. Similarly, the display case was modeled as a beam with uniformly distributed weight resting on two supports.

Race cases were modeled as paddler weights, canoe weight, and a buoyant force unique to each scenario. Paddler weights were estimated as 170 and 200 pounds for a female and male, respectively. To account for dynamic loading, these weight values were increased by $20 \%$. The structural analysis committee decided that modeling the paddlers as linearly distributed loads would provide greater accuracy rather than using point loads. Additionally, a paddler was modeled in either a sitting or kneeling position with a front and back linearly distributed load. Through testing using two scales, the committee determined a kneeling paddler places $63 \%$ of their weight on the front distributed load and $37 \%$ on the back, while a sitting paddler places $83 \%$ of their weight on the back distributed load and $17 \%$ on the front (Figure 3).


Figure 4. Buoyant Force due to Paddler Loads and Canoe Weight

Buoyant forces experienced by the boat were calculated from cross section data. Because of the uneven weight and the asymmetrical design of the canoe, the nonlinear buoyant forces needed to be resolved. To solve for these buoyancy forces, an iterative Microsoft Excel function was used to apply various longitudinal tilts to the loaded canoe until the center of buoyancy was balanced with the center of gravity and the sum of the moments equaled zero. At this point, the buoyant force at each cross sectional increment had been determined. This unique buoyant force distribution is shown in Figure 4. Next, the two-dimensional analysis was performed. Individual cross section data was compiled in Excel, shear stresses were evaluated, bending moments were resolved, and maximum loading cases were determined.

After performing this analysis, the hull design committee recognized that the maximum shear experienced by the canoe arose in all five racing conditions with kneeling paddlers. Furthermore, the men's racing condition was the controlling scenario, where Backcountry was required to withstand a tensile stress of 247 psi in its gunwale cap and a compression stress of 230 psi along its chines. These requirements were then used by the mixture and reinforcement committees in material testing.

## Development and Testing

The primary goals of the mixture committee this year were to find an improved ASTM C330 compliant aggregate, increase the workability of the mixture for troweling, and maintain a unit weight of 65 pcf or lower.


Figure 6. Uncrushed Shale


Figure 5. Crushed Shale Passing No. 8 Sieve (left) and No. 16 Sieve (right)

A combination of the structural mixes Old Faithful (Michigan Tech Concrete Canoe Team 2016) and Lutum (Michigan Tech Concrete Canoe Team 2017) was used in consideration for this year's structural mix, Powderstash. Old Faithful had an exceptional strength-to-weight ratio, leading the committee to again utilize Class C Fly Ash and an identical Poraver® gradation ratio for the final mixture. Lutum implemented the ASTM C330 aggregate rule and a binder blend that proved to be effective in strength while still maintaining a relatively low weight. Brought together, these two previous successes provided a solid baseline to start the mix design process in 2018. 7 and 14 day intervals for compressive strength (ASTM C39), split tensile strength (ASTM C496), and unit weight (ASTM C138) were used for comparing individual mixes and deciding which mix to use in this year's canoe. During the curing phase, cylinders were submerged in water for the first 7 days (after a 12 hour setting period) in an effort to promote better hydration of tricalcium silicate, which is associated with concrete's initial setting and early strength development. Furthermore, due to water's relatively high specific heat, being submerged helped maintain a more consistent curing environment.
In an effort to become more environmentally and economically sustainable, a new testing scheme was designed that would allow for a final mix to be selected earlier in the schedule while testing fewer mixes. In previous years, a tier system was utilized to develop the final mix. Each tier was designed to test a specific aspect of the concrete mix, which was then carried onto the next tier in order to ultimately reach a final design. This year, the initial steps taken by the mixture design committee were to compile the previous three years of mix designs and testing results. The computer software JMP was used to analyze this information. Several multiple regression models were run in an effort to first determine which aspects and material species most directly impacted the ultimate strength of the concrete mixes. The next step was to understand how the ratios of these species directly affected the overall strength of the mix design. More precise models were again constructed, honing in on the selected species. The resulting information indicated material species and ratio in a mix design. From here, a baseline was set for concrete testing.

The binder blend implemented in the structural mixture was chosen after analyzing this year's testing data. The mixture committee found that a combination of portland cement (ASTM C150), blast furnace slag, and fly ash produced the most ideal strength-to-weight ratio. A 60/10/30 blend of cement, slag, and fly ash, respectively, yielded the highest compressive strength and maintained the low unit weight desired by the committee. In previous years, the team sought to create a white mixture to yield more vibrant finishing and aesthetic detail. This
was no longer necessary, as the team used a thin layer of finishing mix across the entire length of the canoe.

Continuing last year's research of ASTM C330 compliant aggregates, one of the main goals this year was to create a refined aggregate to better meet the needs of the mix in terms of workability, finishing, and overall strength. Due to the team's experience with the material, expanded shale was the preferred aggregate to further develop. While it provided adequate strength and met ASTM standards, some of the drawbacks of


Figure 7. Aggregate Proportions by Volume shale were its increase to unit weight and its coarse shape, making it difficult to trowel and finish. To help combat these undesired physical properties, the coarse aggregates were crushed using a roller (Figures 5 and 6). After the shale aggregates were crushed, tests were done to calculate both the specific gravity and absorption rate (ASTM C128). While maintaining the Poraver® ratio used in Old Faithful, $3 \mathrm{M}^{\text {M }} \mathrm{K} 1$ and Elemix® proportions were decided based on workability balanced with compressive strength. The final aggregate proportions are shown in Figure 7.

Seeking to reduce cost and material usage, the mixture committee opted to utilize previous years' research and experience to determine the optimal fibers for use as secondary reinforcement. Lutum incorporated an equal blend of Nycon®-PVA RFS4000 and RFS400. Because this combination met the strength requirement and would maintain a workable mixture, the mixture committee chose to continue its use in the structural mix. Additionally, this was the most cost effective option because all the fibers used this year were excess from last year.

Due to a misinterpretation of compliance, the admixture used previously, SikaLatex®-R, needed to be replaced. Through conversations with other teams at competition, the mixture committee became familiar with QUIKRETE® Concrete Acrylic Fortifier. The committee decided to implement this material due to its performance during testing and short procurement time.

Once a final mixture was attained, compressive strength (ASTM C39), split tensile strength (ASTM C496), and unit weight (ASTM C138) tests were performed. Because the mixture passed all

Table 5. Aggregate Properties

| Aggregate | Specific <br> Gravity | Absorption <br> $(\%)$ |
| :---: | :---: | :---: |
| Poraver® $®-2 \mathrm{~mm}$ | 0.41 | 20 |
| Poraver® 0.5-1 mm | 0.45 | 25 |
| Poraver® ${ }^{\circledR} 0.25-0.5 \mathrm{~mm}$ | 0.68 | 30 |
| K1 | 0.13 | 22 |
| Elemix $®$ | 0.042 | 5.5 |
| Shale | 1.22 | 36 | requirements set by the structural analysis committee, the design was deemed satisfactory.

The reinforcement committee established two primary goals this year: improve workability while maintaining or increasing the concrete's composite flexural strength. Last year's reinforcement, 5 mm Basalt Mesh, proved difficult for trowelers to handle because it stretched and fell apart easily. Thus, the committee searched for a more rigid reinforcing mesh to serve as the primary reinforcement of the canoe. Based on information gained from research and observation of other teams at the national competition, the reinforcement committee decided to investigate the use of fiberglass mesh. Additionally, some teams suggested a layering scheme involving both fiberglass and carbon fiber, leading the reinforcement committee to research


Figure 8. GlasGrid® 8511 (left) and Fibreglast® (right)


Figure 9. ASTM C1341-13 Flexural Bend Test
carbon fiber as well. Carbon fiber was not pursued further, however, because of team alumni advice and lack of success with the material in the past. Therefore, the committee moved forward with fiberglass.

Meshes to be tested were selected based on compliance with competition rules, strength values reported by other teams, and technical data sheets of the products. Because the material was new to the team, the reinforcement committee pursued two fiberglass meshes with contrasting specifications: GlasGrid® 8511 and Fibreglast® Scrim Fabric. These meshes differed significantly in aperture size, rigidity, and price - GlasGrid® 8511 was donated to the team. To validate the decision to continue or discontinue its use as the primary reinforcement, 5 mm Basalt Mesh was tested alongside the two fiberglass samples.

To analyze the composite, advisors in the Materials Science and Engineering department suggested the team follow ASTM C1341-13 rather than ASTM D790, which is intended for reinforced plastics and insulating materials. ASTM C1341-13 specifies a 3-point bend test for fiber-reinforced advanced ceramic composites. Following this standard, 14 in . 3 in. beams were made with two layers of reinforcing mesh between three $1 / 8^{\text {th }}$ inch layers of concrete, simulating the composition of the canoe. Wooden molds were assembled to these dimensions to avoid the need to cut the composite samples. Beams without reinforcement were also tested as a baseline. Because the final structural mixture was not selected until after reinforcement testing, the mixture used in the composite testing was a compliant mixture similar to the structural mixture used last year. The results of this testing, along with other attributes considered, are shown in Table 5.

Qualitative reinforcement testing also took place at troweling practices, where trowelers used samples of each reinforcement and gave feedback to the reinforcement committee. While the fiberglass samples never fell apart like the Basalt, the wall sections tended to bend inward, due to how tightly the mesh was rolled before being cut. In testing, this proved to be an issue with

Table 6. Primary Reinforcement Specifications

| Reinforcement | Composite <br> Flexural <br> Strength (psi) | Open <br> Area (\%) | Price <br> $(\$ / y a r d)$ |
| :---: | :---: | :---: | :---: |
| 5 mm Basalt <br> Mesh | 598 | 62.6 | 7.13 |
| GlasGrid $® 8511$ | 1204 | 60.7 | 0.00 |
| Fibreglast $®$ | 456 | 50.7 | 4.05 | adding layers of concrete once the reinforcement was placed.

Considering these listed variables, the reinforcement committee selected GlasGrid® 8511 as the primary reinforcement in the canoe. With more than double the flexural strength of last year's reinforcement, a more rigid structure, and no cost to the team, this fiberglass mesh stood out as the prime option of the three samples tested. To remedy its issue with bending inward after placement, the reinforcement committee pre-cut sections before casting day and used plywood and weights to hold them flat.

## CONSTRUCTION

Once the hull design was completed, the project managers ordered a high-density polystyrene foam mold. This material has been consistently used by the team in the past because of its machinability, low weight, low cost, and durability. The hull design was machined into the foam material, creating a cavity mold consisting of six separate pieces. To prepare the


Figure 10. Mixing of Concrete Batch on Casting Day mold for casting day, the mold pieces were held together using scrap pieces of plywood and screws left over from the previous year's display table. Furthermore, team members applied several layers of epoxy over a two-week period to facilitate the eventual removal of the boat.

During the fall semester, the Quality Control/Quality Assurance (QC/QA) committee held mock troweling sessions on a weekly basis. In an effort to reuse material, the team saved mold pieces from former canoes to practice troweling. These sessions helped recruit, inform, and acclimate new members to different troweling techniques, as well as improve the existing skill sets of returning troweling team members. Additionally, the team members practiced using different concrete mixes and primary reinforcement samples to give feedback on their workability to the mixture and reinforcement committees.

A week prior to casting day, eight members were assigned a section of the boat to trowel, and four members were chosen to work as "QC/QA monitors." The QC/QA monitors measured the thickness of the concrete layers and informed the trowelers when the concrete was too thick or too thin. 3D-printed depth gauges set to $1 / 8^{\text {th }}, 2 / 8^{\text {ths }}$, and $3 / 8^{\text {ths }}$ of an inch were used to conduct these measurements. Five days before casting day, the entire team measured the materials needed for the concrete mixture. These materials were separated into bagged batches to save time and ensure consistency in the mix. Primary reinforcement was pre-cut to design specifications to decrease time between troweling layers of the boat.

Casting day began with a full team meeting led by the project managers, construction manager, and safety chair to review the safety program and highlight potential hazards involved with the casting process. The laboratory was cooled to $55^{\circ} \mathrm{F}$ to prevent cold joints from forming in the concrete.

To begin the construction of the canoe, the trowelers used concrete trowels to place a $1 / 8^{\text {th }}$ inch layer of concrete on the inside of the mold (Figure 11). Once the QC/QA monitors verified consistency in thickness, reinforcement sections were positioned to cover the length of the boat (Figure 12). The concrete troweling process was repeated for a second and third layer with a second layer of reinforcement in-between. The temperature of the casting room was closely monitored throughout the cast to ensure consistent conditions. Entering casting day, the construction manager set a goal to finish each


Figure 11. Application of the First Layer of Concrete
concrete layer within an hour. This goal was met, as each layer took no more than 55 minutes to complete. Upon completion of the third layer of concrete, foam endcaps were inserted into each end of the canoe and covered with concrete, which was troweled to the desired shape. Pre-cut gunwale cap molds were secured at the top interior perimeter of the boat using bar clamps and wooden wedge clamps (Figure 13). To complete the construction process, a strip of reinforcement was sandwiched between two layers of concrete in the gunwale cap molds.

The project managers chose to use an


Figure 12. Reinforcement Placement ambient cure because of the team's familiarity with the process. Using a makeshift tent of sheet plastic and electric room humidifiers, the boat's curing environment was kept at $70 \%$ humidity and $70^{\circ} \mathrm{F}$. These conditions were maintained for two weeks to allow for cement hydration. To remove the canoe, the mold was carefully disassembled piece by piece while team members held the canoe off the ground. Once fully released, the canoe was placed on open cell foam.

Soon after removal of the mold, the team began sanding the boat, starting with 80 grit sandpaper and gradually increasing to 1000 grit. Between each sanding session, excess concrete dust was removed from the canoe using a vacuum. Additionally, an air ventilation system was used during all finishing activities.


Figure 13. Gunwale Cap Construction

Considered a success last year, pigmented concrete was again used as the primary aesthetic constituent. Starting in January, the aesthetics committee head led several testing sessions to determine the best way to apply the mixture. All aesthetic testing was conducted using sections of the practice canoe from two years ago. This proved to be both a sustainable application of old material and a comfort to the project schedule, as most of the aesthetic testing was completed before the canoe cured. As a result of the testing, paintbrushes and sponge-brushes were used to apply pigmented concrete to the surface of the canoe. The aesthetics committee sought to make the outside of the boat as smooth as possible and attempted to create textured aesthetic components on the inside. Once the aesthetics were completed, two coats of a water based sealer were applied to the canoe, and the sealer was wet sanded with 1000 grit sandpaper for a polished finish.

With these final touches, Backcountry was completed. The Michigan Tech Concrete Canoe Team used inspiration from their local natural landscape to create a final product that embodied the wintry spirit of the upper peninsula of Michigan.

PROJECT SCHEDULE



## Appendix A - REFERENCES

ASCE/NCCC. (2018). 2018 American Society of Civil Engineers National Concrete Canoe Competition Rules and Regulations. ASCE. [http://www.asce.org/rules-and-regulations/](http://www.asce.org/rules-and-regulations/) (November 9, 2017).

ASTM (American Society for Testing Materials). (2013). "Standard Test Method for Flexural Properties of Continuous Fiber-Reinforced Advanced Ceramic Composites". C1341-13. West Conshohocken, PA.

ASTM (American Society for Testing Materials). (2014). "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete". C138/C138M-17a. West Conshohocken, PA.

ASTM (American Society for Testing Materials). (2015). "Standard Test for Relative Density (Specific Gravity) and Absorption of Fine Aggregate". C128-15. West Conshohocken, PA.

ASTM (American Society for Testing Materials). (2015). "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens". C39/C39M-15a. West Conshohocken, PA.

ASTM (American Society for Testing Materials). (2017). "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens". C496/C496M-17. West Conshohocken, PA.

ASTM (American Society for Testing Materials). (2017). "Standard Specification for Lightweight Aggregates for Structural Concrete". C330/C330M-17. West Conshohocken, PA.

ASTM (American Society for Testing Materials). (2017). "Standard Specification for Portland Cement". C150/C150M-17. West Conshohocken, PA.

AutoCAD 2018. Computer Software. Autodesk, Inc., San Rafael, CA.
JMP. Computer Software. SAS Institute, Cary, NC.
Michigan Tech Concrete Canoe Team. (2003). SISU: Michigan Technological University Design Report. Houghton, Michigan.

Michigan Tech Concrete Canoe Team. (2016). Denali: Michigan Technological University Design Report. Houghton, Michigan.

Michigan Tech Concrete Canoe Team. (2017). Free Range: Michigan Technological University Design Report. Houghton, Michigan.

## Backoontray $Y_{i}$

Michigan Technological University. (2018). "Mission, Vision, and Goals." Student Affairs and Advancement, [https://www.mtu.edu/student-affairs/administration/mission/](https://www.mtu.edu/student-affairs/administration/mission/) (January 2, 2018).

Michigan Technological University. (2018). "Snowfall Records and Contests." Alumni and Friends, [http://www.mtu.edu/alumni/favorites/snowfall/index.html](http://www.mtu.edu/alumni/favorites/snowfall/index.html) (January 2, 2018).

Microsoft Excel. Computer Software. Microsoft, Redmond, WA.
PROLINES 98. Computer Software. Vacanti Yacht Design LLC, Anacortes, WA.

Cover photo shot in Lac la Belle, Michigan, courtesy of Tristan Kolb.

## BACKCOUNTRY

## Appendix B - Mixture Proportions

MIXTURE DESIGNATION: STRUCTURAL


* Indicate if aggregate, other than manufactured glass microspheres and/or cenospheres, is compliant with ASTM C330.

MIXTURE DESIGNATION: FINISHING


[^0]
## APPENDIX C - EXAMPLE STRUCTURAL CALCULATION

Analysis of a simply supported canoe with four paddlers from the co-ed race.

## Assumptions

- Canoe theoretical weight $\rightarrow 136 \mathrm{lbs}=136 \mathrm{lbs} / 240 \mathrm{in}=0.68 \mathrm{lbs} / \mathrm{in}$
- Plane sections remain plane
- Weight of canoe is uniformly distributed
- Paddlers are point loads
- Material is homogenous
- Buoyancy modeled as distributed force dependent on individual cross sections' properties

Free Body Diagram


## Resulting Shear and Bending Moment Diagrams


$\operatorname{Max}=217 \mathrm{lbs}$
$\mathrm{Max}=-11842.9 \mathrm{lbs}-\mathrm{ft}$ occurs at cross section 118 " from bow

## Backoontray $Y_{i}$

## Cross Sectional Properties (needed to find canoe self-weight)

- The process used to obtain cross section properties involves breaking each cross-section into pieces, based on the number of control points for the profile curve. The sample calculations below are for the cross-section 118 inches from the bow, which is the midpoint of the canoe. Cross-section 118 has 48 control points. Properties were calculated for one side, and doubled if necessary.

Control Points

| Point | $x$ (in) | $y$ (in) |
| :---: | :--- | :---: |
| 1 | -11.01 | -5.03 |
| 2 | -10.88 | -5.03 |
| 3 | -10.84 | -5.47 |



| Piece | $\Delta \mathrm{x}$ (in) | $\Delta \mathrm{y}$ (in) | $\alpha(\mathrm{rad})$ | d (in) | $\mathrm{A}\left(\mathrm{in}^{2}\right)$ | $\mathrm{I}_{\mathrm{c}}$ (about <br> piece <br> centroid) <br> $\left(\mathrm{in}^{4}\right)$ | $\bar{y}$ (from <br> bottom <br> point) <br> (in) | $\bar{y}$ from <br> coor. <br> Axis <br> (in) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.123 | -0.331 | -0.36 | 0.35 | 0.13 | .0014 | .0015 | -5.26 |
| 2 | .0463 | -0.109 | -0.40 | 0.04 | 0.04 | .0001 | .0004 | -5.48 |

Gunwale y location $=5.129$ in
Keel y location $=-8.744$

$$
I=\frac{b d}{12}\left(d^{2} \cos ^{2}(\alpha)+b^{2} \sin (\alpha)\right)
$$

$$
A=b * d
$$

$$
\bar{y}=\frac{1}{2}(d * \cos (\alpha)+b * \sin (\alpha))
$$

$$
\alpha=\pi-\left|\tan ^{-1}\left(\frac{\Delta y}{\Delta x}\right)\right|
$$

$$
d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}
$$

$$
b=0.375 \mathrm{in}
$$

Cross Section $118^{\prime \prime}$ dimensions
After all properties are calculated for each piece, section properties can be found:
Area A: Sum of all areas, multiplying by two $\rightarrow \mathrm{A}=18.03 \mathrm{in}{ }^{\wedge} 2$


Location of neutral axis, $\bar{y}$ using $A$ and centroids, location of neutral axis can be found: $\bar{y}=\frac{\sum A^{*} C}{\sum A}=-1.75$ in
$\mathrm{I}_{\mathrm{x}}$ : Given $\mathrm{I}_{\mathrm{c}}, \mathrm{A}, \bar{y}$ and location of neutral axis, $\mathrm{I}_{\mathrm{x}}$ about the x -axis can be found using parallel axis theorem. $I_{x}=\sum I+\sum\left(a * d^{2}\right)$

## Gaps and overlaps <br> $$
=659.27 \mathrm{in}
$$

Using angles between pieces; areas, centroids, and moment of inertia for gaps and overlaps were calculated. In depth examples of this procedure, which relies on breaking each gap/overlap into pieces, would exceed the page limit of this appendix.

For cross section 118 :
$\mathrm{A}_{\text {gap }}=0.21$ in^2 $^{\text {^ }} \bar{y}$ from coor. Axis= $-3.57 \quad \mathrm{I}_{\mathrm{x}}$ about x -axis $=5.27$

## Gunwale Caps


$\mathrm{A}_{\text {cap }}=1.37 \mathrm{in}^{2} \quad \bar{y}$ from coor. Axis= 4.42in
$I_{x}$ about $x$ axis $=43.03$ in $^{4}$

Total cross section properties (adding together appropriately)

```
A= 19.03 in^2
Ix}=680.79 in^
y=5.1294 in l about neutral axis=586 in^4
```


## Internal Stresses

```
\sigma=\frac{My}{I}\quad\textrm{y}\mathrm{ gunwale = 5.129 in}
    y keel = -8.7439
\sigmagunwale}=11842.9 in-LB *5.129in/588in^4 = 102.65 psi
\sigma}\mp@subsup{\sigma}{keel}{}=11842.9 in-LB * - 8.7439in/588in^4=176.71 psi
```


## Backcountry $X_{i}$

## Load Case Comparisons

The Men's scenario describes the loads associated with the men's race. Includes boat weight, Buoyant Forces, and paddler weights


Max Stress $=197.06 \mathrm{psi}$

Max Stress $=172.04 \mathrm{psi}$

Max Stress $=32.87 \mathrm{psi}$

Max Stress $=33.71$ psi

The display case represents the loading condition of the boat on stands during display. Modeled as two point loads representing the stands, and distributed canoe dead weight


# Appendix D - Hull Thickness/Reinforcement and Percent Open Area Calculations 

## HULL THICKNESS CALCULATIONS

Calculations per Section 4.3.1

## Annotation

$\mathrm{T}_{1}=0.045 \mathrm{in}$
$\mathrm{T}_{2}=0.045 \mathrm{in}$
$\mathrm{T}_{\mathrm{h}}=0.375 \mathrm{in}$

Average thickness of first layer of reinforcement, GlasGrid 8511 Mesh, measured in accordance with Section 4.3.1

Average thickness of second layer of reinforcement, GlasGrid 8511 Mesh, measured in accordance with Section 4.3.1

Nominal thickness of the canoe hull

Determine that the reinforcement at any point in the canoe will not exceed $50 \%$ of the total hull thickness.

## Solution

Within the canoe, a maximum of two layers of GlasGrid 8511 were used along the bottom of the canoe.


The two layers of reinforcement make up approximately $24.0 \%$ of the hull. This value is less than the maximum value of $50 \%$ outlined in section 4.3.1, demonstrating compliance.

## GUNNEL CAP THICKNESS CALCULATIONS

## Calculations per Section 4.3.1

## Annotation

$\mathrm{T}_{1}=0.045 \mathrm{in}$
Average thickness of the layer of reinforcement, GlasGrid 8511 Mesh, measured in accordance with Section 4.3.1

Nominal thickness of the gunwale cap

Determine that the reinforcement at any point in the canoe will not exceed $50 \%$ of the total hull thickness.

## Solution

One layer of GlasGrid 8511 Mesh was used throughout the gunnel cap.
$\frac{T_{1}}{T_{h}} * 100=3.27 \% \quad \begin{aligned} & \text { The layer of reinforcement makes up approximately } 3.27 \% \text { of the } \\ & \text { gunnel cap. This value is less than the maximum value of } 50 \% \text { out- } \\ & \text { lined in }\end{aligned}$ lined in section 4.3.1, demonstrating compliance.

## Baccicountry $X_{i}$

## PERCENT OPEN AREA CALCULATIONS

## Calculations per Section 4.3.2

Sample: GlasGrid 8511 Mesh
Given
$\mathrm{n}_{1}=9$
Number of apertures along length
Number of apertures along width
$\mathrm{n}_{2}=5$
Average thickness of
$t_{1}=0.262$ in reinforcement along length
$\mathrm{t}_{2}=0.173 \mathrm{in}$
Average thickness of reinforcement along width


Sample of Reinforcement

Aperture_Dimension_1 = 0.737 in

Aperture_Dimension_2 $=0.808$ in
$\mathrm{d}_{1}=$ Aperture_Dimension_1 $+2^{\star}\left(\mathrm{t}_{1} / 2\right)$
$\mathrm{d}_{1}=0.99$ in
$\mathrm{d}_{2}=$ Aperture_Dimension_2 $+2^{*}\left(\mathrm{t}_{2} / 2\right)$

$$
\mathrm{d}_{2}=0.98 \text { in }
$$

Average spacing of reinforcement (center-to-center) along the sample length
Average spacing of reinforcement (center-to-center) along the sample width

Determine Solution Percent Open Area (POA) for the GlasGrid 8511 Mesh

$$
\text { Length }_{\text {sample }}=\mathrm{n}_{1}{ }^{*} \mathrm{~d}_{1} \quad \text { Width } \text { Sample }=\mathrm{n}_{2}{ }^{*} \mathrm{~d}_{2}
$$

$$
\text { Length }_{\text {Sample }}=8.98 \text { in } \quad \text { Width }_{\text {Sample }}=4.91 \text { in }
$$

Area ${ }_{\text {open }}=\mathrm{n}_{1}{ }^{*} \mathrm{n}_{2}{ }^{*}$ Aperture_Dimension_1*Aperture_Dimension_2
Area $_{\text {Total }}=$ Length $_{\text {Sample }}{ }^{*}$ Width $_{\text {Sample }}$

Area $_{\text {open }}=680 \mathrm{in}^{2} \quad$ Area Total $=1120 \mathrm{in}^{2}$

POA $=\left(\text { Area }_{\text {Open }} / \text { Area }_{\text {Total }}\right)^{*} 100$

$$
\mathrm{POA}=60.7 \%
$$

The POA is greater than the $40 \%$ minimum required, demonstrating compliance.


[^0]:    * Indicate if aggregate, other than manufactured glass microspheres and/or cenospheres, is compliant with ASTM C330.

